Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(3): 1840-1848, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471895

RESUMO

Animal farms are important sources of microbial contamination in the air environment. However, there are few reports on the time-regularity characteristics of airborne microbial contamination in farms. In the context of this situation, a study was conducted for more than 80 weeks using 16S rRNA gene amplicon sequencing to characterize the bacterial distribution and respiratory exposure in the farm air and fecal environment, respectively, taking a layer farm as an example. The results showed that 16S rRNA concentrations in air and manure samples ranged from 6.08×105-4.90×106 copies·m-3 and 4.27×108-1.15×1010 copies·g-1, respectively. The mean values of airborne bacterial concentrations were significantly higher in winter than in summer, whereas the biodiversity showed the opposite trend. The dominant bacterial phylum in both air and manure in the layer farm was Firmicutes. During the investigated time, the top three dominant genera in the air were relatively stable, in the order of Lactobacillus, Bacteroides, and Faecalibacterium, whereas the dominant genera in feces fluctuated with the increase in breeding time. The correlation between the community structure of bacteria and pathogenic bacteria in both air and manure was not significant, but the concentrations of both target microorganisms in different media were significantly correlated. The bioaerosolization index of bacteria in manure showed an increasing trend with increasing breeding time, whereas the opposite trend was observed for pathogenic bacteria. In this case, [Ruminococcus]_torques_group, Bacteroides, and Faecalibacterium were the top three pathogenic genera that were the most prone to aerosolization. There were seasonal differences in bacterial respiratory exposures of chicken farm workers, with mean intake values of 2.54×107 copies·d-1 and 2.87×105 copies·d-1 for bacteria and pathogenic bacteria, respectively. The results of this study will provide a scientific basis for systematically assessing the contamination characteristics and potential health risks of airborne microorganisms on farms and for developing corresponding industry standards for occupational exposure and prevention and control measures.


Assuntos
Galinhas , Esterco , Animais , Microbiologia do Ar , Bactérias/genética , Galinhas/genética , Fazendas , Esterco/microbiologia , RNA Ribossômico 16S/genética , Humanos
2.
Environ Sci Pollut Res Int ; 30(56): 118456-118467, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910373

RESUMO

The open-air storage and disposal of livestock waste from family-operated livestock farms can be a potential health threat to rural residents. In this study, the occurrence and seasonal distribution of 8 potentially toxic elements, 24 antibiotics, and 4 estrogens were investigated in 44 waste samples from 11 rural farms in North China. The results showed that these micropollutants were ubiquitous in livestock waste, with concentration ranges of 238.9-4555 mg/kg for potentially toxic elements, not detected (ND) to 286,672 µg/kg for antibiotics and ND to 229.5 µg/kg for estrogens. The pollutants in animal wastes showed seasonal variation. Since these wastes are directly applicable to nearby farmland without treatment, the risks those wastes pose to farmland soils were also evaluated. Risk assessment results showed that Zn, Cd, Hg, FF and DC in swine manures were at high risk, while total estrogens in chicken and dairy cattle manures were at high risk. The results will provide important data for the regulation of animal wastes produced by small-scale livestock farms in rural areas of China.


Assuntos
Estrogênios , Gado , Bovinos , Suínos , Animais , Estrogênios/análise , Fazendas , Antibacterianos/análise , Galinhas , China , Monitoramento Ambiental/métodos , Medição de Risco , Solo
3.
Future Oncol ; 19(32): 2201-2212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37882431

RESUMO

Purpose: To evaluate the patient-reported outcomes of patients treated with commercially approved antibody-drug conjugates (ADC) reported in randomized controlled trials (RCT) published up to September 2023. Methods: A meta-analysis of 6430 patients from 12 randomized controlled trials was conducted. Results: No significant change was observed between the groups from baseline to end of treatment and end of follow-up, with a standardized mean difference of -0.08 (95% CI: -0.27-0.12) and 0.01 (95% CI: -0.11-0.12), respectively. Treatment with ADCs delayed the deterioration of patients' clinical condition compared with treatment with non-ADCs, with a hazard ratio of 0.78 (95% CI: 0.67-0.92). Conclusion: ADCs have a good correlation with delay of clinical deterioration in patients with cancer.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Environ Sci Pollut Res Int ; 30(52): 112799-112812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843709

RESUMO

The particle-size distribution of antimicrobial resistant (AMR) elements is crucial in evaluating their environmental behavior and health risks, and exposure to the fecal microbiome via particle mass (PM) is an important route of transmission of AMR from livestock to humans. However, few studies have explored the association between air and fecal AMR in farm environments from the perspective of particle-size stratification. We collected feces and PMs of different sizes from layer and broiler farms, quantified antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and human pathogenic bacteria (HPB) using Droplet digital PCR (ddPCR), and analyzed the bacterial communities based on 16S rRNA sequencing. The particle-size distributions of 16S rRNA and AMR elements were similar and generally increased with larger particle sizes in chicken farms. In broiler farms, we observed a bimodal distribution with two peaks at 5.8-9.0 µm and 3.3-4.7 µm. The dominant airborne bacterial phyla were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The dominant phyla in the feces were the same as those in the air, but the order of relative abundance varied. The particle-size distributions of specific bacterial genera differed between the animal-farm types. Overall, the degree of association between feces and different particulates increased with increasing particle size. The microbial communities in the coarse particles were similar to those in fecal samples. Escherichia coli, Staphylococcus spp., Campylobacter spp., and sul 2 (sulfonamide ARGs) tended to attach to small particles. We highlight the particle size-specific relationship between fecal and air microbes involving ARGs, MGEs, and HPB and provide valuable information for comprehensively assessing the transmission of fecal microorganisms through the airpath and its environmental and occupational health risks.


Assuntos
Antibacterianos , Galinhas , Animais , Humanos , Fazendas , Tamanho da Partícula , RNA Ribossômico 16S/genética , Galinhas/genética , Pequim , Bactérias/genética , Escherichia coli/genética , Sequências Repetitivas Dispersas , Genes Bacterianos
5.
Front Microbiol ; 14: 1175265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152737

RESUMO

Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in animal feces can be released into the atmosphere via aerosolization, posing a high health risk to farm workers. So far, little attention has been paid to the characterization of the aerosolization process. In this study, fecal and fine particulate matter (PM2.5) samples were collected from 20 animal farms involving swine, cattle, layers, and broilers, and the ARGs, ARB, and human pathogenic bacteria (HPB) were loaded in these two media. The results showed that approximately 70% of ARGs, 60% of ARBs, and 43% of HPBs were found to be preferential aerosolization. The bioaerosolization index (BI) of target 30 ARGs varied from 0.04 to 460.07, and the highest value was detected from tetW. The highest BI values of erythromycin- and tetracycline-resistant bacteria were for Kocuria (13119) and Staphylococcus (24746), respectively, and the distribution of BI in the two types of dominant ARB was similar. Regarding the bioaerosolization behavior of HPB, Clostridium saccharolyticum WM1 was the most easily aerosolized pathogen in swine and broiler farms, and Brucella abortus strain CNM 20040339 had the highest value in cattle and layer farms. Notably, the highest BI values for ARGs, ARB, and HPB were universally detected on chicken farms. Most ARGs, ARB, and HPB positively correlated with animal age, stocking density, and breeding area. Temperature and relative humidity have significant effects on the aerosolization behavior of targets, and the effects of these two parameters on the same target are usually opposite. The results of this study provide a basis for a better understanding of the contribution of animal feces to airborne ARGs and HPBs in farms, as well as for controlling the transport of the fecal microbiome to the environment through the aerosolization pathway.

6.
Crit Rev Oncol Hematol ; 184: 103960, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36907365

RESUMO

BACKGROUND: Antibody-drug conjugates (ADCs) have demonstrated significant efficacy in treating solid tumors. However, the occurrence of ADC drug-associated pneumonitis can limit the use of ADCs or have severe consequences, and we know comparatively little about this. METHODS: PubMed, EMBASE, and the Cochrane library were exhaustively searched for articles and conference abstracts published before September 30, 2022. Two authors independently extracted data from the included studies. A random-effects model was used to conduct a meta-analysis of the relevant outcomes. Forest plots reflected the incidence rates from each study, and binomial methods were used to calculate the 95 % confidence interval. RESULTS: This meta-analysis included 7732 patients from 39 studies and evaluated the incidence of ADCs drug-associated pneumonitis which have received market approval for the treatment of solid tumors. The total incidence of solid tumors for all-grade pneumonitis was 5.86 % (95 % CI, 3.54-8.66 %) and for grade ≥3 was 0.68 % (95 % CI, 0.18-1.38 %). The incidence of all-grade pneumonitis was 5.08 % (95 % CI, 2.76-7.96 %) and for grade ≥3 was 0.57 % (95 % CI, 0.10-1.29 %) with ADC monotherapy. The incidence of all-grade and grade ≥3 pneumonitis in trastuzumab deruxtecan (T-DXd) was 13.58 % (95 % CI, 9.43-18.29 %) and 2.19 % (95 % CI, 0.94-3.81 %), respectively, the highest in ADC therapy. Total incidence of all-grade pneumonitis was 10.58 % (95 % CI, 4.34-18.81 %) and for grade ≥3 pneumonitis was 1.29 % (95 % CI, 0.22-2.92 %) with ADC combination therapy. The incidence of pneumonitis was higher with combination therapy than with monotherapy in both all-grade and grade ≥3 groups, but there was no statistical significance (P = .138 and P = .281, respectively). The incidence of ADC-associated pneumonitis in non-small cell lung cancer (NSCLC) was 22.18 % (95 % CI, 2.14-52.61 %), the highest among solid tumors. The 11 included studies reported 21 pneumonitis-related deaths. CONCLUSIONS: Our findings will assist clinicians in choosing the optimal therapeutic options for patients with solid tumors treated with ADCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoconjugados , Neoplasias Pulmonares , Pneumonia , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Incidência , Neoplasias Pulmonares/tratamento farmacológico , Pneumonia/epidemiologia , Pneumonia/etiologia , Pneumonia/patologia , Imunoconjugados/efeitos adversos
7.
Environ Pollut ; 322: 121251, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764373

RESUMO

The amendment of organic fertilizer derived from livestock manure or biosolids is a significant driver of increasing antibiotic resistance in agricultural soils; however, it remains unclear whether increasing organic fertilizer application rates consistently enhances soil antibiotic resistance levels. Herein, we collected soils with long-term amendment with three types of organic fertilizers at four application rates (15, 30, 45, and 60 t/ha/y) and found that the higher the fertilization rate, the higher the antibiotic resistance gene (ARG) abundance. However, when the fertilization rate exceeded 45 t/ha/y, the ARG abundance ceased to significantly increase. Moreover, the soil ARG abundance was positively correlated with total nitrogen (TN) content and bacterial abundance, especially Firmicutes, and negatively affected by pH and bacterial diversity. Soil TN/bacterial abundance and pH/bacterial diversity reached maximum and minimum values at the 45 t/ha/y fertilization rate, respectively. Meanwhile, at this fertilization rate, Firmicutes enrichment peaked. Therefore, an organic fertilization rate of 45 t/ha/y appeared to represent the threshold for soil antibiotic resistance in this study. The underlying mechanism for this threshold was closely related to soil TN, pH, bacterial abundance, and diversity. Taken together, the findings of this study advance the current understanding regarding the soil resistome under different fertilization rates, while also providing novel insights into organic fertilizer management in agricultural practices.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Microbiologia do Solo , Agricultura , Resistência Microbiana a Medicamentos/genética , Bactérias , Antibacterianos/farmacologia , Esterco/microbiologia , Firmicutes , Nitrogênio
8.
Front Microbiol ; 13: 989085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060751

RESUMO

The plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) among bacteria facilitates the evolution and dissemination of antibiotic resistance. Broad-host-range plasmids can be transferred to different bacterial hosts in soil, plant rhizospheres, and wastewater treatment plants. Although composting is an effective way to convert organic waste into fertilizer and reduce some ARGs, few studies have focused on its effects on the spread of ARG-carrying plasmids and their bacterial host communities during composting. In this study, a fluorescently labeled Pseudomonas putida (P. putida) harboring a broad-host-range plasmid RP4 carrying three ARGs was inoculated into a raw material microcosm and composted with different durations of the thermophilic phase. The fate of the donor and RP4 in composting was investigated. The prolonged thermophilic composting removed 95.1% of dsRed and 98.0% of gfp, and it inhibited the rebound of P. putida and RP4 during the maturation phase. The spread potential of RP4 decreased from 10-4 to 10-6 transconjugants per recipient after composting. In addition, we sorted and analyzed the composition of RP4 recipient bacteria using fluorescence-activated cell sorting combined with 16S rRNA gene amplicon sequencing. The recipient bacteria of RP4 belonged to eight phyla, and Firmicutes, accounting for 75.3%-90.1%, was the dominant phylum in the transconjugants. The diversity and richness of the RP4 recipient community were significantly reduced by prolonged thermophilic periods. Overall, these findings provide new insights for assessing the contribution of composting in mitigating the dissemination of plasmid-mediated ARGs, and the prolonged thermophilic phase of composting can limit the transfer of multidrug-resistant plasmids.

9.
Sci Total Environ ; 851(Pt 1): 158050, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985594

RESUMO

Animal farms are known reservoirs for environmental antimicrobial resistance (AMR). However, knowledge of AMR burden in the air around animal farms remains disproportionately limited. In this study, we characterized the airborne AMR based on the quantitative information of 30 antimicrobial resistance genes (ARGs), four mobile genetic elements (MGEs), and four human pathogenic bacteria (HPBs) involving four animal species from 20 farms. By comparing these genes with those in animal feces, the distinguishing features of airborne AMR were revealed, which included high enrichment of ARGs and their potential mobility to host HPBs. We found that depending on the antimicrobial class, the mean concentration of airborne ARGs in the animal farms ranged from 102 to 104 copies/m3 and was accompanied by a considerable intensity of MGEs and HPBs (approximately 103 copies/m3). Although significant correlations were observed between the ARGs and bacterial communities of air and fecal samples, the abundance of target genes was generally high in fine inhalable particles (PM2.5), with an enrichment ratio of up to 102 in swine and cattle farms. The potential transferability of airborne ARGs was universally strengthened, embodied by a pronounced co-occurrence of ARGs-MGEs in air compared with that in feces. Exposure analysis showed that animal farmworkers may inhale approximately 104 copies of human pathogenic bacteria-associated genera per day potentially carrying highly transferable ARGs, including multidrug resistant Staphylococcus aureus. Moreover, PM2.5 inhalation posed higher human daily intake burdens of some ARGs than those associated with drinking water intake. Overall, our findings highlight the severity of animal-related airborne AMR and the subsequent inhalation exposure, thus improving our understanding of the airborne flow of AMR genes from animals to humans. These findings could help develop strategies to mitigate the human exposure and dissemination of ARGs across different media.


Assuntos
Água Potável , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Bactérias/genética , Bovinos , Farmacorresistência Bacteriana/genética , Fazendas , Genes Bacterianos , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Material Particulado , Suínos
10.
Environ Microbiome ; 17(1): 42, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953830

RESUMO

BACKGROUND: Antibiotics and antibiotic resistance genes (ARGs) used in intensive animal farming threaten human health worldwide; however, the common resistome, ARG mobility, and ARG host composition in different animal manures and mixed manure composts remain unclear. In the present study, metagenomic assembly and cross-sample mapping were used to comprehensively decipher the common resistome and its potential mobility and hosts in animal manure and composts. RESULTS: In total, 201 ARGs were shared among different animal (layer, broiler, swine, beef cow, and dairy cow) manures and accounted for 86-99% of total relative abundance of ARGs. Except for multidrug, sulfonamide, and trimethoprim resistance genes, the relative abundance of most ARGs in composts was significantly lower than that in animal manure. Procrustes analysis indicated that antibiotic residues positively correlated with ARG composition in manure but not in composts. More than 75% ARG subtypes were shared between plasmids and chromosomes in our samples. Transposases could play a pivotal role in mediating the transfer of ARGs between different phyla in animal manure and composting. Cross-sample mapping to contigs carrying ARGs showed that the hosts of common resistome in manure had preference on animal species, and the dominant genus of ARG host shifted from Enterococcus in manure to Pseudomonas in composts. The broad host range and linking with diverse mobile genetic elements (MGEs) were two key factors for ARGs, such as sul1 and aadA, which could survive during composting. The multidrug resistance genes represented the dominant ARGs in pathogenic antibiotic-resistant bacteria in manure but could be effectively controlled by composting. CONCLUSIONS: Our experiments revealed the common resistome in animal manure, classified and relative quantified the ARG hosts, and assessed the mobility of ARGs. Composting can mitigate ARGs in animal manure by altering the bacterial hosts; however, persistent ARGs can escape from the removal because of diverse host range and MGEs. Our findings provide an overall background for source tracking, risk assessment, and control of livestock ARGs.

11.
Ecotoxicol Environ Saf ; 243: 113991, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007318

RESUMO

Airborne fungi can pose serious health concerns in humans; however, the area-specific abundance and composition of airborne fungal microbiota discharged from composting facilities remain unclear. In the present study, we collected air samples from composting, packaging, office, and downwind areas of four commercial composting facilities. The characteristics of airborne fungi, including pathogen/allergen-containing genera, and their corresponding human exposure in different areas of composting facilities were analyzed using high-throughput sequencing and ddPCR. High fungal concentrations and richness were detected in the air of the packaging area. In all four areas, Ascomycota, Basidiomycota, and Mucoromycota were observed to be the primary fungal phyla, with Cladosporium, Alternaria, and Aspergillus as the consistently dominant fungal genera. A large number of endemic airborne fungi were found in the composting and packaging areas, which also shared the most common airborne fungi as well as pathogen/allergen-containing genera. The packaging area contributed substantially to airborne fungi in the office and downwind areas. Area-specific human exposure to broad airborne fungal compositions was revealed, especially regarding the pathogen/allergen-containing genera. Current results provide valuable data for a comprehensive understanding of area-specific airborne fungi in composting facilities and highlight the importance of assessing the inhaled exposure to airborne fungi in evaluating their following health risks.


Assuntos
Microbiologia do Ar , Compostagem , Alérgenos , Alternaria , Aspergillus , Fungos , Humanos
12.
Front Microbiol ; 13: 936267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992716

RESUMO

Bacteriophages (phages), the most abundant biological entities on Earth, have a significant effect on the composition and dynamics of microbial communities, biogeochemical cycles of global ecosystems, and bacterial evolution. A variety of antibiotic resistance genes (ARGs) have been identified in phage genomes in different soil samples. Phages can mediate the transfer of ARGs between bacteria via transduction. Recent studies have suggested that anthropogenic activities promote phage-mediated horizontal gene transfer events. Therefore, the role of phages in the dissemination of ARGs, which are a potential threat to human health, may be underestimated. However, the contribution of phages to the transfer of ARGs is still poorly understood. Considering the growing and wide concerns of antibiotic resistance, phages should be considered a research focus in the mobile resistome. This review aimed to provide an overview of phages as vehicles of ARGs in soil. Here, we summarized the current knowledge on the diversity and abundance of ARGs in soilborne phages and analyzed the contribution of phages to the horizontal transfer of ARGs. Finally, research deficiencies and future perspectives were discussed. This study provides a reference for preventing and controlling ARG pollution in agricultural systems.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35565041

RESUMO

Compost is an important source of airborne fungi that can adversely affect occupational health. However, the aerosol behavior of fungi and their underlying factors in composting facilities are poorly understood. We collected samples from compost piles and the surrounding air during the composting of animal manure and analyzed the aerosolization behavior of fungi and its potential health effects based on the fungal composition and abundance in two media using high-throughput sequencing and ddPCR. There were differences in fungal diversity and richness between the air and composting piles. Ascomycota and Basidiomycota were the two primary fungal phyla in both media. The dominant fungal genera in composting piles were Aspergillus, Thermomyces, and Alternaria, while the dominant airborne fungal genes were Alternaria, Cladosporium, and Sporobolomyces. Although the communities of total fungal genera and pathogenic/allergenic genera were different in the two media, fungal abundance in composting piles was significantly correlated with abundance in air. According to the analysis on fungal composition, a total of 69.10% of the fungal genera and 91.30% of pathogenic/allergenic genera might escape from composting pile into the air. A total of 77 (26.64%) of the fungal genera and six (20%) of pathogenic/allergenic genera were likely to aerosolize. The influence of physicochemical parameters and heavy metals on the aerosol behavior of fungal genera, including pathogenic/allergenic genera, varied among the fungal genera. These results increase our understanding of fungal escape during composting and highlight the importance of aerosolization behavior for predicting the airborne fungal composition and corresponding human health risks in compost facilities.


Assuntos
Basidiomycota , Compostagem , Aerossóis , Animais , Fungos , Esterco/microbiologia , Solo
14.
Environ Microbiol ; 24(7): 3022-3036, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35555952

RESUMO

Hazardous materials, such as heavy metals, are the major sources of health risk. Using genetically modified organisms (GMOs) to dispose heavy metals has the advantages of strong environmental compatibility and high efficiency. However, the biosecurity of GMOs used in the environment is a major concern. In this study, a self-controlled genetic circuit was designed and carefully fine-tuned for programmable expression in Pseudomonas putida KT2440, which is a widely used strain for environmental bioremediation. The cell behaviours were controlled by automatically sensing the variation of Hg2+ concentration without any inducer requirement or manual interventions. More than 98% Hg2+ was adsorbed by the engineered strain with a high cell recovery rate of 96% from waterbody. The remaining cells were killed by the suicide module after the mission was accomplished. The escape frequency of the engineered P. putida strain was lower than 10-9 , which meets the recommendation of US NIH guideline for GMOs release (<10-8 ). The same performance was achieved in a model experiment by using natural lake water with addition of Hg2+ . The microbial diversity analysis further confirmed that the remediation process made little impact on the indigenous ecosystem. Thus, this study provides a practical method for environmental remediation by using GMOs.


Assuntos
Mercúrio , Metais Pesados , Pseudomonas putida , Biodegradação Ambiental , Biosseguridade , Ecossistema , Humanos , Mercúrio/metabolismo , Metais Pesados/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
15.
Huan Jing Ke Xue ; 43(3): 1315-1322, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258195

RESUMO

Composting plants are an important source of airborne fungi. At present, no research has been reported on differences in the types and abundance of escaped fungi in different working areas, which makes it very difficult to comprehensively assess the ecological health risks of the air in composting plants. In light of this situation, this study collected air samples from the composting, packaging, office, and downwind areas of the composting plants and used high-throughput sequencing technology to analyze and compare the biological diversity and community structure of airborne fungi in the four areas. The source of airborne fungi in offices and downwind areas was further traced. The results showed that the highest abundance and diversity of airborne fungi were found in the packing and composting areas of the composting plants. Ascomycota and Basidiomycota were two fungal phyla with the highest relative abundance in the four regions. Overall, the distribution of dominant fungal genera differed; Trichocomaceae and Davidiella were the dominant genera in three areas of the composting plants. Among the 136 detected fungal genera, the number of endemic airborne fungal genera in the composting and packaging area was the largest, and 52.94% of the fungal genera was shared by the four areas. At the level of fungal genera, the community structures in the air in three areas of the composting plants were similar. The statistical difference analysis results of the key genera in different areas of the composting plants showed that the number of different fungal genera between the downwind, packaging, and composting areas was the largest, and no statistically different fungal genera were detected in the air between the packaging and composting areas. The Source Tracker analysis results showed that the contribution percentage of the packaging and composting areas to the airborne fungi in the office and downwind areas was between 9.52%-15.85%. The results of this study will provide basic data for evaluating the relationship between airborne fungal exposure and human health in different areas of the composting plant, as well as its ecological impact on the surrounding air environment.


Assuntos
Microbiologia do Ar , Compostagem , Fungos/classificação , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala
16.
J Hazard Mater ; 430: 128417, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183825

RESUMO

Animal husbandry is a significant contributor to increased environmental antimicrobial resistance (AMR), but little is known regarding the dissemination of AMR from animal farms via airborne transmission. Here, we connected the air path of AMR related genes tailored to layer poultry farms from source of escape to end of sedimentation. The emission inventories of 8 AMR related genes from all 163-layer poultry farms around Beijing city were quantified. We developed the atmospheric transport model with a gene degradation module to estimate the spatiotemporal distribution of airborne AMR, and also assessed their corresponding regional exposure and sedimentation. Total emissions of 16 S rDNA and AMR related genes from layer houses ranged from 1015 to 1016 copies year-1. Those layer-sourced genes contributed 1-14.6% of antimicrobial resistant genes, 4.9% of Staphylococcus spp. and 2.2% of CintI1 to the corresponding annual genetic burden of Beijing's urban air. The average exposure of the Beijing residents to layer-sourced airborne 16 S rDNA was 1.39 × 104 copies year-1 person-1, approximately 87% of them would be deposited in the upper respiratory tract. The findings highlight that air medium represents an important dissemination pathway of animal-sourced genes to AMR burden in humans and environment.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fazendas , Humanos , Aves Domésticas
17.
J Hazard Mater ; 415: 125595, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088171

RESUMO

Antibiotic resistance genes (ARGs) in the endophytes of vegetables represent a potential route of human exposure to the soil resistome. However, the effect of vegetable species on the endophytic ARG profiles is unclear, hampering our understanding of how ARGs migrate into the soil-vegetable system and their potential health risks. Here, we planted four leafy vegetables (cilantro, endive, lettuce, and pak choi), which are commonly eaten raw, and analyzed the resistomes and microbiomes in three sample types (rhizosphere soil, root, and leaf endophytes). A total of 150 ARG subtypes were detected using high-throughput quantitative PCR. Vegetable species had a significant effect on ARG diversity and abundance, and pak choi accumulated more ARGs in its associated microbiome than the other three vegetables. The bacterial community was the primary factor shaping ARG profiles and was significantly correlated with ARG subtypes. We identified aadE, tet(34), and vanSB as shared ARGs among leaves of the four vegetables; the bacterial families correlated with tet(34) and vanSB were also shared across the vegetables and belonged to Proteobacteria. This study deepens our understanding of how endophytic ARG profiles vary among different vegetables and highlights the potential health risk associated with consuming these vegetables raw.


Assuntos
Endófitos , Verduras , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Endófitos/genética , Genes Bacterianos , Humanos , Esterco , Folhas de Planta , Rizosfera , Solo , Microbiologia do Solo
18.
J Gen Appl Microbiol ; 67(4): 162-169, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34120995

RESUMO

Probiotics have been shown to improve microbial compositions in animal intestine and feces, but the effects of probiotic administration on airborne microbial composition in animal houses remain unclear. In this study, we investigated the effects of dietary Enterococcus faecalis on the bacterial community structure in the air of piglet and layer hen houses. Indoor air and feces from piglet and layer hen houses were sampled after supplementing E. faecalis in feed for 60 days, and bacterial community structures were analyzed using Illumina high-throughput sequencing technology. Results showed that Chao1, ACE, Shannon, and Simpson indices of bacterial diversity did not significantly change in feces or indoor air of piglet or layer hen after supplementation with E. faecalis (P > 0.05). However, E. faecalis administration resulted in a decrease in the relative abundance of Proteobacteria (P < 0.05). In addition, E. faecalis significantly reduced the relative abundance of opportunistic pathogens such as Acinetobacter, Escherichia, and Shigella (P < 0.05), and beneficial bacterial genus such as Lactobacillus was significantly enriched in both feces and indoor air (P < 0.05). These changes should be of benefit to livestock, farm workers, and the surrounding environment.


Assuntos
Microbiologia do Ar , Galinhas , Enterococcus faecalis/fisiologia , Abrigo para Animais , Microbiota , Probióticos/administração & dosagem , Sus scrofa , Animais , Fenômenos Fisiológicos Bacterianos , Feminino , Probióticos/metabolismo
19.
Chemosphere ; 263: 128099, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297095

RESUMO

Antibiotic accumulation in soil and plants is an escalating problem in agriculture and is receiving increasing attention. However, the effect of plant species on the fate of different types of antibiotics in a soil-vegetable system and soil resistome has not been adequately explored. To this end, greenhouse pot experiments were conducted to simulate contamination by ciprofloxacin (CIP), oxytetracycline (OTC), sulfamethoxazole (SMZ), and tylosin (TY) at 1 mg kg-1 in the soils in which cabbage, endive, and spinach were grown. We investigated antibiotic persistence in soils and accumulation in vegetables (i.e., spinach, endive, and cabbage), microbial community profiles, and the abundance of 17 antibiotic resistance genes (ARGs) in contaminated soils. After 40 days, the residues of CIP and OTC in soil and their accumulation in vegetables were significantly higher than those of SMZ and TY. Of all vegetables, spinach had the highest antibiotic accumulation. Further, antibiotic contamination had no significant effect on soil microbial abundance; however, soil microbial diversity significantly decreased in soils amended with TY. The antibiotic type more significantly affected microbial composition than the kind of vegetable species. The relative abundances of some ARGs significantly increased in contaminated soils. Particularly, in endive soil, quinolone-associated cmlA, cmlA2, and qnrS1 increased with CIP contamination, OTC contamination increased tetG2 and otrA, SMZ increased sul1, and TY increased macrolide-related carB and msrc-01 relative abundance. However, some individual ARGs declined upon antibiotic contamination. Our results indicated that antibiotic type and vegetable species jointly shape the profiles of soil microorganisms and ARGs.


Assuntos
Microbiota , Solo , Antibacterianos , Genes Bacterianos , Esterco , Microbiota/genética , Microbiologia do Solo , Verduras
20.
Environ Res ; 198: 110463, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33189740

RESUMO

The spread of pharmaceutically active chemicals (PACs), such as antibiotics and estrogenic hormones from animal manures can pose threats to the ecologic environment. In this work, animal manure samples were collected from 71 concentrated animal feedlots in Northern China and investigated for 24 antibiotics and 4 estrogenic hormones. Results showed that these micropollutants were ubiquitous in manures with the concentration ranges of undetectable (ND)-543,445 µg/kg (mean: 44,568 µg/kg) for antibiotics and ND-249.8 µg/kg (mean: 24.78 µg/kg) for estrogens. There was a significant variation in the amounts of PACs in different animal manures. The amounts of antibiotics in manures had following order: swine (83,177 µg/kg) >chicken (52,932 µg/kg) >beef (37,120 µg/kg) >dairy (305 µg/kg), while the estrogens in dairy (mean: 39.27 µg/kg) and chicken manures (mean: 40.08 µg/kg) were higher than those in beef (2.7 µg/kg) and swine manures (1.8 µg/kg). Based on the estimated farmland application rate of manure, antibiotics and estrogens may cause high ecological risks to terrestrial organisms according to the risk quotient evaluation. Estrogens could pose a relatively higher risk than antibiotics. The toxicological effects of antibiotics and estrogens to the terrestrial environment should receive more intensive study.


Assuntos
Antibacterianos , Esterco , Animais , Antibacterianos/toxicidade , Bovinos , China , Estrogênios/toxicidade , Fazendas , Esterco/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...